Mode

Students must do a complex project, composed by some sub-project, specifications, tests & docs. Base evaluation is 24/30 points, student can increase score explaining his choices and his contribution to a project. Each student single or two-coupled must write code and a series of documents.

Exam will be done all ensemble to present entire project, sub systems and system test; at end of system test each sub group explain his contribution to project.

Two Line Lift Project

Exam project is an electronic subsystem to actuate a double line person lift. System must have:

- Two Passengers cabin (button box depend from dig in microcontroller used)
- Almost three floor, up limit auto configurable counting floors button box
- At floor external calling buttons for up or down
- SPI Daisy Chain or I2C¹ communication bus from
 - \circ all floor button box
 - \circ cabin button box
- dispatch unit
 - motor subsystems (two unit)
 - simulate motor driving
 - simulate line sensors detecting motion
 - floor showing status panel

Sub Systems requirement

- Floor button box
 - One button to call for up
 - One button to call for down
 - One indicator call for up pressed
 - One indicator call for down pressed
 - Check if one button is missing then system detect if is ground or more high floor
- Passenger cabin button box
 - One button call for each floor or numeric keyboard
 - Up down motion indicator
 - Floor indicator
 - Stop Button
 - Alarm Button
 - \circ Door open button
- Dispatch Unit
 - Centralize all request and status
 - Compute the optimum
 - \circ Send to right lift request
- Motor Unit Simulator
 - Receive Requests from Dispatch Unit
 - Send to system cabin position & status

¹ Must be done a choice and motivate them

Università di Camerino - Facoltà di Scienze e Tecnologie - LM-18 Computer Science SSI

Embedded System I

Final exam

- Button/Switch to simulate system break
- Simulate cabin motion (timing from a floor to other floor)
- If available, use a "servo motor" to rotate a disk with floor number and able to see:
 - Start ramp
 - Continuous motion
 - Stop ramp
- Passengers cabin IN/OUT & light simulator
 - Connect to Motor Simulator
 - When enabled (cabin stopped at floor) set numbers of out and in person
 - If all passengers out cabin light off (saving energy) and cancel all request from cabin button box
- Auxiliary components
 - A I2C or SPI (or both) monitor to debug, displaying data locally on LCD Display and send all traffic to host PC (Serial.print)
 - 0